Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brian N. Figgis* and Alexandre N. Sobolev

Chemistry, M313, School of Biomedical and Chemical Sciences, University of Western
Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Correspondence e-mail:
bnf@theochem.uwa.edu.au

Key indicators

Single-crystal X-ray study
$T=11 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.001 \AA$
R factor $=0.020$
$w R$ factor $=0.054$
Data-to-parameter ratio $=61.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexacarbonylchromium(0) at 11 K

The crystal structure of hexacarbonylchromium $(0),\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$, has been refined with an accurate and extensive X-ray data set collected at 11 K . This data set should be suitable for chargedensity analysis studies. The structure is made up of isolated $\mathrm{Cr}(\mathrm{CO})_{6}$ molecules of very near octahedral symmetry, containing a crystallographic mirror plane.

Comment

$\mathrm{Cr}(\mathrm{CO})_{6}$, (I), has long been of interest in inorganic chemistry as it is an archetypal transition metal carbonyl complex. Its room-temperature structure was determined by Whitaker \& Jeffery (1967) and an $X-\mathrm{N}$ charge-density study was carried out at 74 K (Rees \& Mitschler, 1976).

The cell parameters, bond lengths and angles for the $\mathrm{Cr}(\mathrm{CO})_{6}$ molecule at various temperatures are given in Table 1.

The structure consists of isolated $\mathrm{Cr}(\mathrm{CO})_{6}$ molecules. Each molecule comprises a near-regular octahedron. There is a plane containing two pairs of CO groups related by crystallographic mirror symmetry and with $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ angles within 1° of a right angle. The relevant $\mathrm{Cr}-\mathrm{C}$ bond lengths differ by only $0.005 \AA$. Above and below this plane are two CO groups within 0.5° of a right angle and which differ in distance only slightly $(0.005 \AA)$ and match those in the plane within the same amount, the overall average being $1.916 \AA$. The $\mathrm{Cr}-\mathrm{C}-$ O angles are all within 1° of being linear, and the $\mathrm{C}-\mathrm{O}$ bond lengths all lie within $0.002 \AA$ of the average of $1.142 \AA$.

The atomic displacement parameters decrease with temperature, largely as expected.

Experimental

In a sealed glass tube, $\mathrm{Cr}(\mathrm{CO})_{6}$ (Aldrich) was sublimed over a temperature gradient of $c a 1 \mathrm{~K} \mathrm{~mm}^{-1}$ for a period of 1 d . The very low temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Henriksen et al., 1986; Larsen, 1995). A full sphere of data was collected. The correction for the absorption by the beryllium thermal shields was calculated by the PROFIT (Streltsov \& Zavodnik, 1989) program.

Crystal data

$\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$	Mo $\mathrm{K} \alpha$ radiation
$M_{r}=220.06$	Cell parameters from 14
Orthorhombic, Pnma	reflections
$a=11.474(1) \AA$	$\theta=31.4-38.7^{\circ}$
$b=10.894(1) \AA$	$\mu=1.47 \mathrm{~mm}^{-1}$
$c=6.1885(4) \AA$	$T=11.0(5) \mathrm{K}$
$V=773.55(11) \AA^{3}$	Prism, pale yellow
$Z=4$	$0.46 \times 0.40 \times 0.40 \mathrm{~mm}$
$D_{x}=1.890 \mathrm{Mg} \mathrm{m}^{-3}$	

Received 24 June 2004
Accepted 1 July 2004
Online 9 July 2004

Data collection

Huber 512 goniometer diffractometer
$\omega-2 \theta$ scans
Absorption correction: Gaussian
(Xtal3.7; Hall et al., 2000)
$T_{\text {min }}=0.564, T_{\text {max }}=0.639$
27649 measured reflections
4212 independent reflections
4125 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.054$
$S=1.14$
4212 reflections
68 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.023 \\
& \theta_{\max }=50.1^{\circ} \\
& h=-24 \rightarrow 24 \\
& k=-23 \rightarrow 23 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0244 P)^{2}\right. \\
& \quad+0.21 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.00 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \text { Extinction coefficient: } 0.069(2)
\end{aligned}
\end{aligned}
$$

Table 1
Cell parameters $\left(\AA, \AA^{3}\right)$, bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the $\mathrm{Cr}(\mathrm{CO})_{6}$ molecule at various temperatures (K) by X-ray $\{\mathrm{X}\}$ and neutron $\{\mathrm{N}\}$ diffraction.

Cell parameters	$293\{\mathrm{X}\}^{a}$	$74\{\mathrm{X}\}^{b}$	$78\{\mathrm{~N}\}^{c}$	$11\{\mathrm{X}\}^{d}$
a	$11.769(12)$	$11.505(4)$	$11.490(15)$	$11.474(1)$
b	$11.092(11)$	$10.916(3)$	$10.905(13)$	$10.894(1)$
c	$6.332(6)$	$6.203(2)$	$6.197(14)$	$6.1885(4)$
V	$826.6(24)$	$779.0(7)$	$776.5(37)$	$773.55(11)$
$\mathrm{Cr}-\mathrm{C} 1$	$1.891(7)$	$1.912(2)$	$1.913(2)$	$1.9121(5)$
$\mathrm{Cr}-\mathrm{C} 2$	$1.928(7)$	$1.916(2)$	$1.911(2)$	$1.9171(5)$
$\mathrm{Cr}-\mathrm{C} 3$	$1.910(4)$	$1.915(1)$	$1.913(1)$	$1.9152(4)$
$\mathrm{Cr}-\mathrm{C} 4$	$1.909(4)$	$1.918(1)$	$1.919(1)$	$1.9201(4)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.151(8)$	$1.143(3)$	$1.140(1)$	$1.1432(7)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.109(8)$	$1.141(3)$	$1.141(1)$	$1.1421(7)$
$\mathrm{C} 3-\mathrm{O} 3$	$1.137(6)$	$1.139(2)$	$1.141(1)$	$1.1412(5)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.143(6)$	$1.138(2)$	$1.138(1)$	$1.1399(5)$
$\mathrm{Cr}-\mathrm{C} 1-\mathrm{O} 1$	$179.6(6)$	$179.9(2)$	$180.0(1)$	$179.94(5)$
$\mathrm{Cr}-\mathrm{C} 2-\mathrm{O} 2$	$178.8(6)$	$179.1(2)$	$179.5(1)$	$179.45(5)$
$\mathrm{Cr}-\mathrm{C} 3-\mathrm{O} 3$	$178.3(4)$	$179.4(2)$	$179.37(8)$	$179.38(4)$
$\mathrm{Cr}-\mathrm{C} 4-\mathrm{O} 4$	$178.5(4)$	$179.2(1)$	$179.10(7)$	$179.19(3)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 2$	$178.9(3)$	$179.6(1)$	$179.4(1)$	$179.45(2)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 3$	$90.0(2)$	$90.37(6)$	$90.34(6)$	$90.36(2)$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 4$	$89.8(3)$	$90.14(7)$	$89.96(6)$	$90.09(2)$
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{C} 3$	$90.7(2)$	$89.94(6)$	$90.06(6)$	$90.03(2)$
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{C} 4$	$89.4(2)$	$89.55(6)$	$89.65(6)$	$89.53(2)$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 3^{\mathrm{i}}$	$89.5(3)$	$89.40(8)$	$89.53(8)$	$89.54(2)$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 4$	$89.5(2)$	$89.85(5)$	$89.79(3)$	$89.79(2)$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 4^{\mathrm{i}}$	$179.3(3)$	$179.10(6)$	$179.26(8)$	$179.20(2)$
$\mathrm{C} 4-\mathrm{Cr}-\mathrm{C} 4^{\mathrm{i}}$	$90.8(3)$	$90.89(8)$	$90.89(8)$	$90.88(2)$

References: (a) Whitaker \& Jeffery (1967); (b) Rees \& Mitschler (1976); (c) Jost et al. (1975); (d) this work. Symmetry code: (i) $x, \frac{1}{2}-y, z$.

Figure 1
The $\mathrm{Cr}(\mathrm{CO})_{6}$ molecule at 11 K . Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $x, \frac{1}{2}-y, z$.]

Data collection: Local diffractometer control software; cell refinement: Local diffractometer control software; data reduction: PROFIT (Streltsov \& Zavodnik, 1989); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Hall, S. R., du Boulay, D. J. \& Olthof-Hazekamp, R. (2000). Editors. Xtal3. 7 System. University of Western Australia, Australia.
Henriksen, K., Larsen, F. K. \& Rasmussen, S. E. (1986). J. Appl. Cryst. 19, 390394.

Jost, A., Rees, B. \& Yelon, W. B. (1975). Acta Cryst. B31, 2649-2658.
Larsen, F. K. (1995). Acta Cryst. B51, 468-482.
Rees, B. \& Mitschler, A. (1976). J. Am. Chem. Soc. 98, 7918-7924. Streltsov, V. A. \& Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824-828. Whitaker, A. \& Jeffery, J. W. (1967). Acta Cryst. 23, 977-984.

